LNUC Project 3

Visual Analytics for Engineering Smarter Systems

Prof. Andreas Kerren & <u>Dr. Rafael Martins</u>

CS Department, Linnaeus University

December 8, 2016

- Information Overload Problem (IOP) or *Big Data*
 - Data is stored without filtering or refinements for future use
 - Often, raw data has no value in itself
 - Time and money are wasted

- Information Overload Problem (IOP) or *Big Data*
 - Data is stored without filtering or refinements for future use
 - Often, raw data has no value in itself
 - Time and money are wasted
- Important Questions
 - How to make use of the data?
 - Who/what defines the relevance of an information?

- Information Overload Problem (IOP) or *Big Data*
 - Data is stored without filtering or refinements for future use
 - Often, raw data has no value in itself
 - Time and money are wasted
- Important Questions
 - How to make use of the data?
 - Who/what defines the relevance of an information?
 - What kind of visual representation and interaction technique can facilitate problem solving and decision making?

 In many cases, an automatic analysis is *not* or *only partly* possible!

	I				111		IV	
	х	у	х	у	х	у	х	У
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89
mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5
var.	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75
corr.	0.816		0.816		0.816		0.816	

Anscombe's Quartet: Raw Data

In many cases, an automatic analysis is *not* or *only partly* possible!

Anscombe's Quartet: Raw Data											
		I	l II		111		IV				
	х	у	х	у	х	у	x	У			
	10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58			
	8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76			
	13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71			
	9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84			
	11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47			
	14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04			
	6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25			
	4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50			
	12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56			
	7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91			
	5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89			
mean	9.0	7.5	9.0	7.5	9.0	7.5	9.0	7.5			
var.	10.0	3.75	10.0	3.75	10.0	3.75	10.0	3.75			
corr.	0.816		0.816		0.816		0.816				

+ identical linear regression

- Information Visualization (InfoVis)
 - Pure interactive visualization methods do not work for billions of abstract data records
 - Not enough pixels, too much clutter, ...

Linnaeus University

Linnaeus University

© Prof. Dr. Andreas Kerren

8

Linnaeus University

© Prof. Dr. Andreas Kerren

9

Visual Analytics & InfoVis

- Information Visualization (InfoVis)
 - Pure interactive visualization methods do not work for billions of abstract data records
 - Not enough pixels, too much clutter, ... —
- Visual Analytics (VA)
 - Science of analytical reasoning facilitated by interactive visual interfaces
 - Combines the strengths of humans and computers
 - Information and Scientific Visualization, HCI
 - Data Mining and Data Management (ML, SP, ...)

Visual Analytics & InfoVis

- VA is used to
 - synthesize information and derive insight from massive, dynamic, ambiguous, and often conflicting data
 - "detect the expected and discover the unexpected" TM
 - provide timely, defensible, and understandable assessments
 - communicate assessments effectively for action, i.e., *decision making*

Visual Analytics & InfoVis

- VA is used to
 - synthesize information and derive insight from massive, dynamic, ambiguous, and often conflicting data
 - "detect the expected and discover the unexpected" $^{\rm TM}$
 - provide timely, defensible, and understandable assessments
 - communicate assessments effectively for action, i.e., *decision making*
- VA mantra
 - "Analyze first, show the important, zoom, filter and analyze further, details on demand"

- Overall aims of the project
 - Generate new knowledge to better understand and engineer complex cyber-physical systems
 - Increase performance, guarantee reliability, better prediction, control/monitoring of their behavior, ...

 Knowledge generation cycle is based on data collection and visual analytics^{*}

* https://dx.doi.org/10.1109/TVCG.2014.2346481

Linnaeus University

- Multidimensional and streaming data comes
 - from the systems themselves and their environments,
 - from the computational models which are used for analysis,
 - and from resulting models that describe the systems and their behavior
- Research goal
 - We will develop foundational visual analytics principles, techniques and tools to reach the aim of better understanding and engineering cyber-physical systems

Linnaeus University

- System domains and data providers
 - still open (e.g., power grids, vehicle fleets)
 - depends on scientific challenges, tasks to solve, domain experts available, ...
- Kickoff meeting in January 2017
 - Identification of project members and collaborators
 - Definition of the concrete challenges on the research side (VA, ML, IoT, ...) and on the application side

• If your analysis problem fits into this scope and you're interested in to get involved

andreas.kerren@lnu.se

- Contact us even if your data, analysis tasks, etc. don't perfectly fit into this VA project
 - Could be the basis of future common proposals for external funding around InfoVis and VA

Linnaeus University

